Böhm Trees as Higher-Order Recursive Schemes

نویسندگان

  • Pierre Clairambault
  • Andrzej S. Murawski
چکیده

Higher-order recursive schemes (HORS) are schematic representations of functional programs. They generate possibly infinite ranked labelled trees and, in that respect, are known to be equivalent to a restricted fragment of the λY -calculus consisting of ground-type terms whose free variables have types of the form o→ ⋯→ o (with o being a special case). In this paper, we show that any λY -term (with no restrictions on term type or the types of free variables) can actually be represented by a HORS. More precisely, for any λY -termM , there exists a HORS generating a tree that faithfully representsM ’s (η-long) Böhm tree. In particular, the HORS captures higher-order binding information contained in the Böhm tree. An analogous result holds for finitary PCF. As a consequence, we can reduce a variety of problems related to the λY -calculus or finitary PCF to problems concerning higher-order recursive schemes. For instance, Böhm tree equivalence can be reduced to the equivalence problem for HORS. Our results also enable MSO modelchecking of Böhm trees, despite the general undecidability of the problem. 1998 ACM Subject Classification F.3.3, F.4.1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Finite-State Transducers as Regular Böhm Trees

We present a uniform translation from finite-state transducers to regular Böhm trees presentations. The corresponding Böhm tree represents directly the trace semantics of all finite and infinite behaviours of the given transducer. We consider variations on this basic idea, and generalisations of finite-state transducers suggested by the general formalism of regular Böhm trees. This work suggest...

متن کامل

The Subtree Size Profile of Bucket Recursive Trees

Kazemi (2014) introduced a new version of bucket recursive trees as another generalization of recursive trees where buckets have variable capacities. In this paper, we get the $p$-th factorial moments of the random variable $S_{n,1}$ which counts the number of subtrees size-1 profile (leaves) and show a phase change of this random variable. These can be obtained by solving a first order partial...

متن کامل

Regular Böhm trees

Böhm trees are the natural infinite generalisations of normal forms in pure λ-calculus. They arose from the work of Böhm on separability (Böhm 1968), and were first identified by Barendregt, who devotes chapter 10 of his book (Barendregt 1980) to their study, and relates denotational models such as D∞ to appropriate quotients over Böhm trees. There is however no generally agreed presentation of...

متن کامل

Recursive Schemes, Krivine Machines, and Collapsible Pushdown Automata

Higher-order recursive schemes offer an interesting method of approximating program semantics. The semantics of a scheme is an infinite tree labeled with built-in constants. This tree represents the meaning of the program up to the meaning of built-in constants. It is much easier to reason about properties of such trees than properties of interpreted programs. Moreover some interesting properti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013